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Plasmastromungen grofler Amplitude und Ladungstrennung”

Von R. W. LAreNz
Aus dem Institut fiir theoretische Physik der Technischen Hochschule Hannover
(Z. Naturforschg. 10a, 766—776 [1955] ; eingegangen am 22. Juni 1955)

Zur Begriindung des Einbaus der Ladungstrennung in die Magnetohydrodynamik des kom-
pressiblen Mediums werden eindimensionale schallwellenartige Plasmabewegungen untersucht. Es
ergeben sich spezifische, als ,,Jonen-“ und ,,Elektronen-Schall® gekennzeichnete Stromungen groBer
Amplitude mit periodischer und nichtperiodischer Struktur, die unter geeigneten Bedingungen zu
ortlich praktisch vollstindiger Ladungstrennung fithren konnen. Fiir die Begrenzung der Ladungs-
trennung, die als Temperaturfunktion ermittelt wird, erweisen sich Druckkrifte als wesentlich.

In der vorhergehenden! Arbeit war bei der Ablei-
tung von magnetohydrodynamischen Gleichungen
fiir das kompressible Medium ortlich verschiedene
Dichte der positiven und negativen Plasmakompo-
nenten und damit also Ladungstrennung zugelassen
worden mit dem Hinweis, dal} diese beriicksichtigt
werden miisse, wenn Stromungsgeschwindigkeiten
auftreten, die mit der Schallgeschwindigkeit ver-
gleichbar sind. Es erhebt sich die Frage, inwieweit
der Einbau der Ladungstrennung in die Plasmatheo-
rie gerechtfertigt erscheint trotz der vielfach ge-
aullerten Ansicht, daf} es auf Grund der gegeniiber
anderen zwischenatomaren oder -molekularen Kraf-
ten sehr groflen Coulombschen Anziehung zwischen
Ladungstrdgern verschiedenen Vorzeichens im Plas-
ma nicht zu einem nennenswerten Aufbau von Raum-
ladungen kommen konne. Wir stellen uns daher mit
dieser Arbeit die Aufgabe, einen Uberblick iiber
Ausmal} und Grenzen einer eventuell moglichen La-
dungstrennung zu gewinnen. Diese Frage ist vor
allem auch im Zusammenhang mit dem Verstindnis
der Entstehung der iiberthermischen kosmischen
Radiostrahlung wichtig, als deren Ursache man u. a.
makroskopisch kohédrente Plasmaschwingungen ver-
mutet. Bei dem gesetzten Ziel liegt es nahe, die Un-
tersuchung auf den Prototyp mit Dichteschwankun-
gen verbundener Plasmastromungen zu konzentrie-
ren, namlich rein longitudinale schallwellenartige
Bewegungen. Da wir eventuell existierende Grenzen
fiir die Ladungstrennung angeben wollen, miissen
wir versuchen, die hydrodynamischen Plasmaglei-
chungen streng zu losen, denn nur eine nichtlineare
Theorie kann Aussagen iber Grenzamplituden lie-
fern. Wir werden also die in der vorhergehenden
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schwankungen, die uns dort eine teilweise Linearisie-
rung der Gleichungen erlaubte, nicht beibehalten.
Wir setzen aber auch fiir diese Untersuchung die
Giiltigkeit der adiabatischen Zustandsgleichung vor-
aus, betrachten also reversible Stromungsvorgéinge
in einem aus positiven und negativen Ladungstra-
gern bestehenden Plasma. Wie in der vorhergehen-
den Arbeit lassen wir auch hier Abweichungen vom
Temperaturgleichgewicht zwischen den Ladungstra-
gern zu.

§ 1. Die Grundgleichungen fiir quasistationire,
rein longitudinale Bewegung und erste
Integrationen

Entsprechend dem in der Einleitung skizzierten
Programm sollen ebene, seitlich nicht begrenzte
schallwellenartige Bewegungen eines im Ruhezustand
homogenen und elektrisch neutralen Mediums be-
handelt werden. Die Zustandsgroflen hiangen dann
nur von einer Raumkoordinate « und der Zeit ¢ ab.
Um auf gewohnliche Differentialgleichungen zu kom-
men, werden wir solche Stromungen untersuchen, bei
denen die Zustandsgroen nur vom Argument
x* =x —v,t abhdngen; wir beschrinken uns also
auf quasistationédre, eindimensionale Plasmabewe-
gungen, bei denen eine konstante Fortpflanzungs-
geschwindigkeit v, auftritt. Ein mit der Geschwin-
digkeit v, mitbewegter Beobachter nimmt dann ein
zeitlich nicht verdnderliches Stromungsbild wahr.
Die gewohnliche Hydrodynamik kennt zwar fiir den
Fall durchgéngiger Giiltigkeit der adiabatischen Zu-
standsgleichung keine quasistationdren Bewegungen
endlicher Amplitude, solange Gravitationswirkungen
keine Rolle spielen2. Im Plasma sind jedoch, wie

2 In einer inzwischen erschienenen Arbeit von H. L. Hel-
f er, Astrophys. J. 119, 34 [1954], wird letzterer Fall unter-
sucht mit Methoden, die den unserigen in einigen Ziigen ver-
wandt sind.
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sich zeigen wird, unter dem Einflul} der elektrischen
Zusatzglieder in den hydrodynamischen Gleichun-
gen quasistationdre Bewegungen moglich, was uns
die mathematische Durchfilhrung des Programms
sehr erleichtert.

Bei der Festlegung auf eindimensionale, longitu-
dinale Bewegung muf} die Anwesenheit eines Ma-
gnetfeldes mit Komponenten senkrecht zur z-Rich-
tung ausgeschlossen werden, wihrend eine evtl. vor-
handene 2z-Komponente ohne Einflu bleibt; ein
Eigenmagnetfeld der longitudinalen Plasmastrome
kann bei der seitlichen Unbegrenztheit der Stromung
nicht auftreten. (Unabhingigkeit von den Koordi-
naten y und z! Leitungs- und Verschiebungs-Strom
kompensieren einander.) Andere Krafte als solche,
die vom Druck und elektrischen Feld herriihren, be-
riicksichtigen wir bei dieser Untersuchung nicht. Wir
verzichten also auch auf die Mitnahme von Reibungs-
gliedern, was wir ohnehin tun miissen, wenn wir die
Forderung der Adiabasie bzw. Reversibilitat streng
beibehalten wollen. In die Zustandsgleichung setzen
wir als Polytropenexponenten » den Wert %/3 fiir
einatomige Gase ein. Nach diesen Voraussetzungen
bleibt von den Gln. (1) bis (9) der vorhergehenden
Arbeit nach Transformation auf ein Koordinaten-
system, das sich mit der Geschwindigkeit v, bewegt,
unter Beriicksichtigung der Abhingigkeit von der
Koordinate z* =z — v, ¢, Kennzeichnung der Ablei-
tung nach 2* durch einen Strich und Einfiihrung des
elektrostatischen Potentials @

P,~=N0kT0,-(Nj/N0)5/’ mit 3 j:i,e (1)

Nim;vivi + P/ = —N;e D', (2)
Nemeveve + P/ =N.e D’ (3)

(N;v;)" =0 oder gleich integriert v;/vy=Ny/N;,(4)
@’ — —4me(N;—N,). (5)

An den vorstehenden Ausgangsgleichungen lassen
sich sofort einige Integrationen ausfiihren. Addieren
wir (2) zu (3) und setzen (4) und (5) ein, so ent-
steht

Novo(mivi+meve) + (Pi+P) = L@ & (6)
und durch Integration*

8—1; @2 = Ny v, (m;vi + mev,) + P;+ P. —const . (7)

3 j=positive, e=negative Ladungstriager, wobei letztere
nicht notwendig Elektronen sein miissen.
4 Diese Integration laft sich auch fiir den nichtadiabati-
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-Dividieren wir (2) bzw. (3) durch N; bzw. N, und

filhren (1) ein, so lassen sich diese Gleichungen
schreiben:

1 2 m; Uj2’+5/2kT0j(Nj/N0):/‘, = —€j @’ (8)
mit j=i,e, ej= Te,
die integriert mit Beriicksichtigung der Zustandsglei-
chung den Energiesatz bezogen auf einen Ladungs-
trager ergeben:

—ej@=1/2mjvj2+"’/2ij—Cj. (9)
Durch Addition der beiden durch (9) reprasentier-

ten Gleichungen entsteht eine von @ freie Bezie-
hung, die man als Energiesatz fiir ein Tragerpaar

bezeichnen kann:
'.}mivi‘-’+ng1+%meveg+ng0 —Ci—CCZO.
(10)

§ 2. Fortfiilhrung der Integration
und Fallunterscheidungen

Mit (7) und (9) sind Ausdriicke fiir @ und @ ge-
geben. Unsere Aufgabe, die Integration des Systems
nichtlinearer Differentialgleichungen (2) bis (5), ist
gelost, wenn es gelingt, die Quadratur

@

a* —z,* = [dD/ D’ (11)

q>l
auszufiihren. Hierzu werden wir zweckmaflig di-
mensionslose Groflen einfithren und unter Benutzung
der adiabatischen Zustandsgleichung und der Bezie-
hung (4) als Variable nur noch v; und v, in den
Gln. (7) bis (11) belassen. v; und v, sind nach (4)
umgekehrt proportional den uns in erster Linie in-
teressierenden Dichten N; und N,.

Es sei
5 k To;/3 m; 1.)02 =K=¢112/’U()2 s
(2K~m;ve?) (Ci+C.) =C,
TOQ/TOiZﬁZ]-a mi/me:q9

*=x—vyt=1&2m7,

dmet Ny M _(wel‘)"’_ﬂ{’, o2
mevy? 4a? \2mu) w77
Vig=is_y Yeg—s_7
v i v :

schen Fall durchfiihren. Fiir @’ =0 resultiert dann eine der
Hugoniot-Gleichungen fiir die Endzustinde vor und hinter
einer stationdren PlasmastoBwelle.
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Mit diesen Einfithrungen schreibt sich (10)

Y243Y 4 1/qZ243927—C=0 (12)

und der das Problem lésende Quadraturausdruck
(11) unter Beachtung von (7) und (9)
(Y)

E [ ) = + K Jd(y2+3 Y’:."s) 13a
Vq(v 71) _21/2v VR ( )
(Y)
K/ (Z)d(l/ Zz+3l92 ~/)
. /16 ¢ q- ”7__15
BRE: V2j VR (13b)
(Zy)
mit
R=Y+3/5Yr+1/q-Z+3/59Z "~ Ry~ D2,
R, = const. (14)

Aus diesen Gleichungen konnen Y und Z als
Funktion von &, d. h. also die Geschwindigkeiten v;
und v, bzw. die Dichten N; und /N, als Funktion des
Ortes bestimmt werden. Auch ohne eine explizite
Ausrechnung, die nur numerisch durchfithrbar ist,
liefert eine Diskussion dieser Gleichungen alles Wis-
senswerte tiber die moglichen Losungen, wie folgt.

Das = -Zeichen deutet darauf hin, daf} die Losun-
gen von (13) in der Y —¢&- bzw. Z —&-Ebene zu
einer Achse §=&; symmetrisch sind, wobei die zu-
gehorigen Ordinaten Y und Z, Extremwerte sein
miissen. Wir konnen die untere Integrationsgrenze
Y, bzw. Z, an diese Stelle legen und dann & =&, =0
setzen. Durch (12) — vom 4. Grad in Y** oder
Z' — st in der YZ-Ebene fiir positiv reelle Y, Z
(nur solche sind physikalisch sinnvoll) eine geschlos-
sene Kurve festgelegt, die in Abb. 1 qualitativ fiir
drei verschiedene Fille wiedergegeben ist. Gleichzei-
tig sind auf dieser Kurve die Extrema des Radikan-
den R (proportional dem Quadrat der Feldstirke!)
aus dem Integral (13) eingetragen, die auf Grund
einer elementaren Rechnung angenommen werden
an den Stellen:

¥=1, mir dZdY=0z Maximum bzw. Minimum fiir 1 bzw <Z
Z=(g 9)%8, mit dY/dZ=0: ~ o b Ao - g
und fiir Y =2Z.

Eindeutige Losungen sind jeweils nur auf einem
Teilstiick dieser Kurve realisiert, auf dem auflerdem
noch R >> 0 sein muf}, das also durch 2 Nullstellen
von R begrenzt wird. Qualitativ zeigt Abb. 2 den
Verlauf von R tiber einem Teilstiick dieser Kurve
Y (Z). Zwischen den beiden Nullstellen liegt stets ein
Maximum, und zwar jenes fir Y =2, d. h. N;=N,,
da das Plasma im rdumlichen und zeitlichen Mittel
elektrisch neutral sein soll. Je nach Wahl der Kon-
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Abb. 1. Zur geometrischen Veranschaulichung der Gl. (12)
und Diskussion des Integranden von (13). Y ~ 1/Nj,

. Z ~1[Ne; + bzw — Bereiche positiver bzw. negativer

Raumladung. (Fiir ¢ > 1 ist die Hohenerstreckung der ge-
schlossenen Kurve sehr viel groBer als ihre Breitenerstrek-
kung.)

stanten R, riicken die Grenzen Y; und Y, des physi-
kalisch realisierten Bereichs auseinander, was zu-
nehmenden Amplituden (und Ladungstrennungen)
entspricht, bis eine der beiden Nullstellen oder beide
mit einem Minimum von R zusammenfallen, was
einem Stromungsvorgang mit maximal moglicher
Ladungstrennung entspricht. Mogliche Lésungen
miissen also in den Kurvenbereichen liegen, die von
den beiden Minima, die ein Maximum auf der Ge-
raden Y =7 einschlieflen, begrenzt sind. Diese Be-
reiche sind in Abb. 1 bei den verschiedenen, durch
die Koeffizienten g, ¢ und C gegebenen Lagen der
Kurve mit den Buchstaben I und E gekennzeichnet,
deren Bedeutung im néchsten Paragraphen erldutert
wird.

Abb. 2. Zur Demonstration des Verlaufs des Radikanden im
Integral (13) innerhalb eines Integrationsgebietes Y,...Y,.

Man erkennt, dafl es gewisse, nicht tiberschreit-
bare Maximalschwankungen fiir die Variablen Y
und Z und damit fir die Dichten N;, N, gibt. Offen-
bar widersetzt sich der Druck, der durch das Glied
Y~ bzw. 9 Z7" in (12) reprisentiert wird, einer
beliebig starken Kompression von Ladungstriagern
eines Vorzeichens (d.h. N;— oo, Y bzw. Z—0),
die aus den mit dem Stromungsvorgang verbunde-
nen Trigheits- und elektrischen Kréften resultiert.
Es sind also nicht die Coulombschen Krifte zwi-
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schen den Ladungstrigern, welche eine Ladungstren-
nung begrenzen.

Das Aussehen der Losungen &(N;) bzw. Ny (&)
von (13) wird davon abhingen, ob die Nullstellen
von R auf einem Minimum liegen oder nicht. Wir
haben also das Verhalten des Integranden in (13)
an den Stellen R=0 (— @' =0) zu untersuchen,
der, wenn wir Y oder Z als Integrationsvariable
wahlen, bis auf konstante Faktoren lautet:

Y(A-Y~—*) Z(1—g9 2z~

7 e
Nimmt R kein Minimum an, so wird auch keiner der
Punkte dZ/dY =9 bei Y =1, baw. Z= (¢9)" er-
reicht; der Zahler des Integranden bleibt endlich und
der Integrand selbst hat an den Stellen

R(Y1,Z) —0—R(Ys,Zy)

(15 a) (15b)

eine integrable Singularitit von der Ordnung !/2.
Die Losung Ny (&) hat daher bei R =0 eine horizon-
tale Tangente; ferner ergibt sich bei Integration von

Y, bis Y, bzw. Z, bis Z, ein endlicher Wert

aby/Vg=aalVq, x,*=1/2

und wir erhalten damit in diesem Fall das Charak-
teristikum periodischer Funktionen, hier also perio-
dische Dichteschwankungen der beiden Plasmakom-
ponenten um eine mittlere Ruhedichte, die nahe-
rungsweise durch den Wert gegeben sein wird, der
durch Y =7 (Maximum von R) festgelegt ist. Wird
jedoch mit R =0 das Minimum bei Y=Y,=72=2,
erreicht (Abb. 1a), so bleibt wiederum der Zihler
des Integranden endlich, aber R hat eine Nullstelle
2. Ordnung und damit der Integrand eine nicht inte-
grable Singularitat 1. Ordnung. Die Variable & bzw.
x* =x — v, ¢t wachst damit in positiver und negativer
Richtung tiber alle Grenzen. Es ergibt sich eine nicht-
periodische Losung V; (&), die sich von Vj; monoton
abfallend ins Unendliche erstreckt. Diese Losung be-
schreibt also einen einmaligen, mit der Geschwindig-
keit v, fortschreitenden Verdichtungsimpuls im
Plasma, bei dem die Ruhedichte NV, im Unendlichen

angenommen wird.

Beginnt — als weiterer Fall — die Integration in
positiver Y- oder Z-Richtung an der Stelle eines R-
Minimums mit R=0 bei Y, =1, (dZ/dY =0) oder
Z;=(qg®)™, (dY/dZ=0), so verschwinden Zihler
und Nenner des Integranden. Wie man sich durch
Entwicklung an der Stelle 1 bzw. (g &) leicht iiber-
zeugt, nehmen die Ausdriicke (15) in der Umgebung
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von Yy bzw. Z; dann eine finite Form an, die wir
fir (15a) anschreiben

1z 1 o
oz Y-D+...0, Y21
(16)

mit Z; aus (12) fir Y=Y, =1.

Hier beginnt also die Lésungsfunktion fiir die je-
weilig groBlere der beiden Dichten N;(§) bei £=0
wegen des reguldren Integranden mit endlicher Stei-
gung, wihrend die jeweils kleinere Dichte wegen
dZ/dY =0 bzw. dY/dZ =0 an dieser Stelle eine hori-
zontale Tangente besitzt. Fiir eine der beiden Plasma-
komponenten bildet sich in diesem Fall, der sowohl
bei periodischen als auch aperiodischen Losungen
eintreten kann, eine Dichtespitze aus; die hdochst-
moglichen Verdichtungen sind also durch die Punkte
dZ/dY =9 =dN./dN; gekennzeichnet, bei denen die
Losungen des Differentialgleichungssystems (2) bis
(5) singuldres Verhalten zeigen. Auf diese singuli-
ren Losungen werden wir in den folgenden Paragra-
phen bei der Ermittlung der maximal moglichen
Ladungstrennung in Abhéngigkeit von den Tempe-
raturen T;, Ty, zuriickgreifen.

Mit diesen eben diskutierten Féllen sind alle phy-
sikalisch bedeutsamen Moglichkeiten behandelt, so
daB wir auf die Behandlung weiterer Spezialfille,
die etwa aus gewissen Grenzlagen der durch Abb. 1
qualitativ skizzierten Verhiltnisse resultieren, ver-
zichten kénnen.

Einiger Bemerkungen bedarf es noch beziiglich der Fest-
legung der Konstanten R,, C, K, a. Bei der Aufstellung der
Gleichungen in § 1 waren zundchst 3 freie Konstanten in Er-
scheinung getreten. Es sind die spiter durch K ausgedriickte
Fortpflanzungsgeschwindigkeit v, in (4), dann eine Konstante
von der Dimension einer Energiedichte in (7), die zu R,
fiithrte, und schlieBlich eine auf C fithrende Energiekonstante
in (10), wihrend a nur die Rolle eines kiinstlich hineinge-
brachten Mafstabsfaktors spielt, der es gestattet, bei periodi-
schen Losungen & iiblicherweise als Winkelvariable aufzufas-
sen. Bei bekannten Ruhegrof3en im Plasma hangen die Losun-
gen von (13) damit jedoch nicht von 3 Parametern ab. Bei
periodischen Losungen hat man ndmlich noch die Forderung
zu beachten, daf} die iiber eine Periode gemittelten Dichten
gleich der Ruhedichte N, sein miissen. Dies fiihrt in unseren
dimensionslosen Grofien zu der Beziehung

Y,
ax K'ls (1-Y—"s
Va V2 VR

1

a7

oder zu einem gleichwertigen Ausdruck in Z. Fiir periodische
Losungen sind somit 2 Parameter (innerhalb gewisser Gren-
zen) frei wihlbar, etwa die Frequenz und einer der Amplitu-
denwerte Yy, Y,, Z,, Z,. Die vier letzteren Werte hiangen dann
iiber (12) und die Forderung, daB R ~ &’2 an den #uBersten
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Integrationsgrenzen verschwinden muf, mit den Konstanten
R, C zusammen, wihrend eine weitere Beziehung, die a und
K enthilt, dadurch entsteht, da3 das tiber das ganze Integra-
tionsintervall erstreckte Integral (13) &=um liefern soll. Im
aperiodischen Fall ist C und R, unmittelbar durch die Ruhe-
groflen auszudriicken, denen nun die obere Integrationsgrenze
Y,=Z,=K—°/s zugeordnet ist. Damit ist dann nur noch eine
Dichteamplitude oder die Fortpflanzungsgeschwindigkeit (in
gewissen Grenzen) frei wahlbar.

§ 3. Ionenschall — Elektronenschall

Ist in § 2 die Integration der Gleichungen (2) bis
(5) durch Ruckfithrung auf eine zwar komplizierte
Quadratur unter Erlauterung einer Reihe von Ge-
sichtspunkten im Prinzip durchgefiihrt, so sollen
jetzt die Konsequenzen untersucht werden, die sich
aus dem Fall ergeben, dafl das Massenverhaltnis
g =m;/m, eine gegen 1 sehr grofle Zahl wird. (Elek-
tronen als negative Ladungstriger.) Einen Uberblick
iiber das Verhiltnis der Dichte- bzw. Geschwindig-
keitsschwankungen von Ionen und Elektronen erhal-
ten wir durch Bildung des Ausdrucks dZ/dY an der
Stelle, wo beide Dichten gleich sind. Aus (12) erhilt

man

(i@) g YT

a¥/)z—y~ " 91—qov-h"
Bei aperiodischen Losungen ist N;=N, sicher bei
der Ruhedichte Ny, wo ¥ =Z =K~ gilt. Auch fiir

periodische Losungen wird dieser Wert ndherungs-
weise zutreffen, da der ,elektrisch neutrale Punkt

YA-Y—'mdy

R. W.LARENZ

Ni=N stets in der Nahe der mittleren Dichte N,
liegt, um welche die Dichteschwankungen erfolgen.
Damit wird

(,d,Z,) ~ g 17K
dv)z—y— " 91-¢9K
-2
mit K=%Sl, da Y stets > 1.
(1)

Wenn nun ¢ K>1, d. h. die wegen K<<1
sidleritégrihglbi_ der ,Ionenschallgeschwindigkeit*
a;=V5kT/3 m; liegende Fortpflanzungsgeschwin-
digkeit v, kleiner als die ,,Elektronenschallgeschwin-

digkeit“ a, =15k To/3 m, ist, hat man
(dZ/dY)z-y=>~ (1-K)/IK.

Sofern nun dieser Ausdruck <<}/g bleibt, ist der
EinfluB der mit 1/q multiplizierten Glieder in (12)
und R(Y,Z) (14) belanglos; sie konnen daher ge-
strichen werden, was der Vernachldssigung von Im-
puls und kinetischer Energie der Elektronen gegen-
iber den iibrigen Groen entspricht. Wir bezeichnen
Bewegungen, die den eben genannten Bedingungen
geniigen, als Ionenschall (in der Abb. 1 durch I ge-
kennzeichnet), weil die Fortpflanzungsgeschwindig-
keit zwischen der oben definierten Ionenschall- und
Elektronenschallgeschwindigkeit liegt.

Nach Streichung der mit dem Faktor 1/¢q behafte-
ten Glieder, laBt sich (12) unmittelbar nach Z auf-
losen und in den Nenner des Integranden von (13)
einsetzen, womit die Quadratur (13 a) direkt &(Y)
oder N;(&) gibt und damit tiber (12) auch N, (§).

af _ KM . -
q V2 | v+ssy=g3s 9 {5 (c—y2—3 Y-} —R,

Y, =1

Die (18) zugrunde liegende Voraussetzung
dz/dy <Vq

kann an den Losungen gepriift werden.

Bei Bewegungen mit Fortpflanzungsgeschwindig-
keiten oberhalb der Elektronenschallgeschwindigkeit
sprechen wir von Elektronenschall (Bezeichnung E
in Abb. 1). Hier ist ¢ ¥ K <1 und dementsprechend

—(dZ[dY)z_y ~q/(1—qP¥K)=gq,

d. h. die Bewegungsamplituden der Ionen sind um
einen Faktor = ¢ kleiner als die der Elektronen,
was sich im geometrischen Bild (Abb. 1) darin
duBert, daBl die geschlossene Kurve eine sehr viel

(18)

groflere Hohen- als Breitenerstreckung aufweist und
mit sehr steiler Tangente durch den Punkt Z=Y im
E-Gebiet geht. Wir befinden uns offenbar im Bereich
schnell verdnderlicher Vorginge, die, wie die noch
abzuleitende Dispersionsformel zeigt, durch Fre-
quenzen oberhalb der Plasmafrequenz gekennzeich-
net sind, bei denen — wie aus der Plasmatheorie
bekannt — die Ionen wegen ihrer groflen Masse
praktisch ruhen. Wahrend die Bezeichnung ,,Ionen-
schall“ keineswegs so verstanden werden darf, als
seien die Ionen allein am Bewegungsvorgang betei-
ligt, trifft eine entsprechende Deutung des Wortes
»Elektronenschall praktisch zu. Demgemill werden
wir die von Y ~ y;~ 1/N; abhingigen Teile in
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(12) und (14) an der durch die Ruhedichte ge-
gebenen Stelle ¥ = K~ nach der kleinen Schwan-
kung ¥ — K~ bis zu Gliedern erster Ordnung ent-
wickeln und dann (12) in den Integranden von
(13b) einsetzen. Machen wir noch die in § 2 einge-
fiihrte Normierung riickgdngig und schreiben
ZK"=vfvg=w
g9 K=K.=5kTy/3 m.vy=a>/vi®,

so lautet (13Db) jetzt

sowie

(1—Ke w5 w dw

Kl/ai w—wr+3 Ke(®sw—""— w—") —R, °

Uy

as==T

!__ﬁs

\"J

Wy

[

(19)
Dieser Ausdruck enthdlt nun keine auf die Ionen
Bezug nehmenden GroBen mehr; er gilt daher all-
gemein fiir die Elektronenkomponente eines belie-
bigen Plasmas, solange Dampfungseffekte vernach-
lassigt werden konnen. Hétte man in den Ausgangs-
gleichungen (1) bis (5) von vornherein /N; konstant
=N, gesetzt, so wiare man ebenfalls auf (19) ge-
fihrt worden.

Die GIn. (18) und (19) werden wir nun in den
folgenden Paragraphen benutzen, um Integrations-
beispiele fiir Ionen- und Elektronenschall zu disku-
tieren und die Ladungstrennung zu berechnen.

Schallwellen im Plasma, unterteilt nach Elektronen- und
Ionenschwingungen, wurden in einem zusammenfassenden
Bericht von Rompe und Steenbeck?® mit Hilfe kom-
binierter Kontinuums- und Teilchenvorstellungen in linearer
Niherung behandelt. (Fiir einen Vergleich von Methoden
und Ergebnissen sei bemerkt, dal dem Begriff der Gruppen-
geschwindigkeit in der Form vy,—A/ dvy/dA in einer nicht-
linearen Theorie keinerlei Bedeutung zukommt.) Zwei neuere
experimentelle Arbeiten an Gasentladungen von Morgan®
und Oleson?7 scheinen die in den folgenden Paragraphen
behandelten Erscheinungen zu bestitigen, soweit dies aus
den kurzen Mitteilungen zu entnehmen ist.

§ 4. Ionenschall — Integrationsbeispiel
und Ladungstrennung

In Abb. 3 ist der durch numerische Integration
von (18) gewonnene Dichteverlauf fiir einen aperio-
dischen Ionenschallimpuls wiedergegeben, der bei
einem Temperaturverhaltnis ¢ =T ./Ty; =100, wie
es in Glimmentladungen vorkommt und auch in den
auflersten Teilen der Sonnenkorona vorhanden sein
mag, quasistationdr mit maximaler Amplitude mog-

5R. Rompe u. M. Steenbeck, Ergebn. exakt.
Naturw. 18, 297 fi. [1939].

771

lich ist. Wir haben hier also vom Mindestwert
Y=Y,=1 ab integriert, bei dem die in §2 er-
wihnte Dichtespitze auftritt. Die obere Integrations-
grenze, welche der Ruhedichte entspricht, ist
Y,=K "*=Z,, so daB} die Ionenverdichtungsampli-
tude d=N;pax/Nog=Y,/Y, =K%Y, wird. Wegen
K =a?/vy® ist also die Fortpflanzungsgeschwindig-
keit dieser aperiodischen Ionenschallimpulse gegeben
durch

¥ okl

vo_ 5 k Toi

(Yld)lﬂ> 3"li L}

o (20)
wobei im Falle quasistationdr maximal méglicher
Amplitude Y; =1 und d nur eine Funktion von #
ist, die wir aus den Nullstellen von R an den Gren-
zen des Integrals (18) leicht ermitteln konnen. Aus
(12) folgt, wenn man zunidchst C durch Einsetzen
von Yy,=Z,=d bestimmt (unter Streichung des
Gliedes mit 1/q)

= {5 le(1r3ara o) -4} " @)

und aus (14), wenn in gleicher Weise R, bestimmt
ist,
854+1/5(39) {2 (1+3d (1 +9)) — 4}
=d(1+3/5d (1 +19)).
(22)

—
X~ Vot

Abb. 3. Quasistationdr extremal moglicher, aperiodischer
Verdichtungsimpuls bei Tge/T9i=10%. v,=Fortpflanzungsge-
schwindigkeit.

Die durch (22) gegebene maximale Verdichtungs-
amplitude d ist in Abb. 4 fiir den praktisch interes-
sierenden Bereich von ¢ aufgetragen. Man entnimmt
daraus, daB3 fiir ¢ = 30 bereits eine 5-fache Verdich-
tung moglich ist, die damit grofler ist als diejenige
einer stationdaren StoBwelle, fir die der Wert
(#+1)/(x—1) =4 bei x=5/3 nicht iiberschritten
werden kann. Setzt man die ermittelten Werte fiir

6
7

D. Morgan, Nature, Lond. 172, 542 [1953].
| P

G.
N. Oleson, Phys. Rev. 92, 848 [1953].
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d(¥) in (20) ein, so sieht man, daB die Fortpflan-
zungsgeschwindigkeit dieser maximalen aperiodi-
schen Ionen Ionenschallimpulse fir 1 < ¢ < oc im

Gebiet
v9=1,62 = 1,84 V5 k Tyo/3 m;
> V5 k(Toi+ Toe) /3 mi
liegt, also praktisch fiir 9 < 3 nur durch die Elek-

tronentemperatur bestimmt wird 8.

(23)

7 12
| 7/
| F |
| | ‘//
10 - o 20
y /
Al
//
) L
| — — 15
X A |
Ni- Ne 54 ‘
05 Ni+Ne Cal . S 0
' 27— g o Nimax |
# No |
/// ‘
[ =7 &
= i i |
= _A
0 - ‘ 15
1

2 3
tog(Toe/Toi) ——=

Abb. 4. Maximale Ladungstrennung und Ionenverdichtung
im Ionenschallgebiet in Abhdngigkeit vom Verhiltnis Elek-
tronentemperatur zu lonentemperatur.

Fir beliebige adiabatisch-reversible Ionenschallwel-
len gilt daher?®

5k T ;

N < p2<34

3 mj

5% Toe 1 ai’
3 mj 3,49 <v0‘-’<1'
(24)

Die in der vorhergehenden Arbeit definierte La-
dungstrennung (NV; — N.)/(N; +N,) ist an der Stelle
der Dichtespitze durch

7(Nirn}§t}(~Ne max)r _ (?l .y Y1)

(Ni max+Nermax) i (Z1+Y1)

oder

(Z,—1)
(Z,+1)

gegeben und in Abb. 4 ebenfalls eingetragen. Thr
Anwachsen mit dem Temperaturverhaltnis ist im Zu-
sammenhang mit dem Anstieg der Verdichtungs-
amplitude physikalisch anschaulich so zu verstehen,
daBl die mit steigendem 7T'/T; immer stirker wer-
dende Elektronendiffusion die Elektronendichtever-
teilung auseinanderzuziehen und zu verflachen be-
strebt ist, was nur durch gleichfalls stiarker werdende
elektrische Felder, d.h. Ladungstrennung verhin-
dert werden kann. Die Ladungstrennung laft sich
aber durch Anh&ufung von Ionen, wie in § 2 aus-
gefiihrt, nicht beliebig steigern und so wird schlief3-
lich die Amplitude begrenzt, da die bei weiterer Ver-

8 Vgl. Rompe u. Steenbeck, l.c.%
9 Der Zahlwert 3,4=1,84% folgt aus einer Grenzwert-
betrachtung von (22) fiir ¢ — oo .
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dichtung auftretenden Druckkrifte nicht mehr kom-
pensiert werden konnten.

Man entnimmt Abb. 4, dall bei vollstindigem
oder nédherungsweisem Temperaturgleichgewicht
# <10 das AusmaBl der quasistationir moglichen
Dichteschwankungen mit << 100%0 und der Ladungs-
trennung mit <<30% im hier diskutierten Ionen-
schallgebiet den Anforderungen geniigt, die wir bei
der Ableitung des Gleichungssystems (24), (25)
mit (21) in der vorhergehenden Arbeit zugrunde
legten, namlich AN/N <1. Wenn bei allgemeinen
instationdren Vorgdngen sicher groflere Werte fur
die Dichteschwankungen auftreten konnen als bei
den hier untersuchten quasistationdren Vorgéngen,
so werden letztere doch Richtwerte liefern und man
kann daher sagen, daf} das abgeleitete Gleichungs-
system bei # <10 unter Voraussetzung durchgingi-
ger Giiltigkeit der adiabatischen Zustandsgleichung
als geniigend streng giiltig anzusehen ist fiir alle mit
dem Jonenschall zusammenhingenden Stromungs-
vorginge. Gl. (20) macht aber deutlich, daf} mit La-
dungstrennung zu rechnen ist, sobald Stromungs-
geschwindigkeiten auftreten, die mit der Ionenschall-
geschwindigkeit vergleichbar oder gréfer als diese
sind.

Fragen wir zur weiteren Charakterisierung des
Ionenschalls nach der Grofle der zeitlichen Zustands-
dnderungen bzw. bei periodischen Vorgéngen nach
der Frequenz, so miissen wir, da die Fortpflanzungs-
geschwindigkeit v, bekannt ist, eine Schallimpuls-
breite oder Wellenlinge ermitteln. Als Impulsbreite
werden wir fiir die aperiodischen Losungen zweck-
miBig den Abstand der beiden das Dichtemaximum
flankierenden Punkte gleicher Ionen- und Elektro-
nendichte definieren. Setzen wir fiir diese Stelle
Z =Y =Y, und berechnen wir fiir den Fall des Auf-
tretens einer Dichtespitze das Integral (18) in erster
Néherung durch das Produkt von Integrationsinter-
vall ¥;— 1 mit dem Integranden in der Form (15a)
an der Stelle Y, =1, so ergibt sich

13 .- 28l i ~ “/mi ’7217 . .
(«VQ)YI_quo 2_K ]/6] Zl—-l(Y/ 1);
(25)

Z, ist darin durch (21) gegeben. Y; ist als zweite

Losung ¥ =Z von (12) fiir den aperiodischen Fall

zu ermitteln: Spalten wir die erste Losung
Y=Z-K7"=Y,d

ab, so wird aus (12)

( Y, :

Y.d ) 1*()‘1?;)‘/3+ (%) '=3(Y;d) " (1+9). (26)
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Berechnen wir die rechte Seite von (25), die wegen
Y, hier =1 und der Existenz der GIn. (20) bis
(22) eine Funktion von ¥ allein ist, so ergibt sich
fiir den untersuchten ¥-Bereich a £/)/ ¢ == 0,5 = 0,1
d. h. die charakteristischen Zeiten liegen zwischen
dem 0,5 =~ 0,1-fachen des Reziprokwertes der Ionen-
plasmafrequenz ;=147 e? No/m; . Allgemeiner
kann man also sagen, dal das Ionenschallgebiet
durch Frequenzen unter und in der Umgebung der
Ionenplasmafrequenz charakterisiert ist. Als Breite
! dieser Impulse maximaler Ladungstrennung hat

b2 (GT/%) Y ]‘/4 :i;‘% :

woraus mit den oben angegebenen Werten von
a&/Vq und Gl. (23) fiir die Groflenordnung von [
folgt1?

man

M

4me2 Ny’ (27)

Unter den Verhaltnissen der mittleren Sonnen-
korona mit T, 2~ 106 ° K und N, 2~ 10% em 2 ergibt
sich [ in der Groflenordnung Dezimeter.

Mit den bisherigen Ergebnissen lassen sich nun weitere
Fragen nach der elektrischen Feldstirke etc. beantworten.
Man hat dazu die Gleichungen von § 1 fiir @, @ etc. heran-
zuziehen. Zum Beispiel erhilt man fiir die Potentialdifferenz
zwischen Dichtespitze Y;=1 und Ruhezustand bei den aperio-
dischen Impulsen ausgehend von (9)

e AD ~12miv2 {1+3d*/s—4d—2)},
was fiir groBere Dichteamplituden (z. B. wie in Abb. 4) unter
Beriicksichtigung von (23) einfach zu e AD ~ 2 k Ty fiihrt
und also unter den schon genannten Koronaverhiltnissen 49
in der GroBenordnung 100 Volt ergibt. Fiir die Groflen-
ordnung der Feldstirke hat man dann mit (27)

& ~ APl ~ YNyk Toe = VPe ,

d. h. thermische und elektrische Energiedichte sind miteinan-
der vergleichbar.

Als auslosendes oder treibendes Agens der aperiodischen
Impulse kommt vielleicht eine auf der Riickseite etwas hohere
Plasmaruhedichte in Betracht, so da8 man die hier unter-
suchten Verdichtungsimpulse als Relaxationserscheinung und
ihre Struktur als Grenzfall der Frontstruktur einer ,,adiaba-
tisch-reversiblen Plasmastowelle“ deuten kann. Diese Vor-
stellung 1aBt sich durch Vergleich von Impulsgeschwindigkeit
nach (20) mit der Geschwindigkeit einer nichtadiabatischen
Plasmastowelle quantitativ erhérten. Das hier vorausgesetzte
reversible Verhalten des Plasmas ld3t StoBwellen nicht be-
handeln; Verfasser hofft, dies in einer weiteren Arbeit tun
zu konnen. Soviel kann aber schon gesagt werden, daB sich
vor der StoBfront ein dhnliches Bild ergibt wie in Abb. 3
und in der StoBfront ein starkes Uberschwingen von Ionen-

10 Die minimale Impulsbreite liegt also bei der sog.
»Debye-Linge“ (siehe?).
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und Elektronendichte iiber die hintere Ruhedichte stattfindet
analog der Dichtespitze.

Die Ausbildung der Dichtespitze wird als im Wesen der
hier betriebenen Kontinuumstheorie liegend anzusehen sein;
jedenfalls erscheint es fraglich, ob sie in einer strengen gas-
kinetischen Theorie, bei welcher wegen der in der Verdich-
tung erhohten Temperatur u. U. auch Strahlungsprozesse zu
beriicksichtigen wiren, ebenfalls auftritt. Wairmeleitung,
Strahlung etc. wirken alle im Sinne einer Temperatur- und
Druckerniedrigung in der Verdichtung gegeniiber dem streng
adiabatischen Fall, so dal zur Erreichung des Grenzdruckes
die Grenzverdichtung und -Ladungstrennung dadurch herauf-
gesetzt wiirde. Man erkennt dies bereits am Beispiel eines
.lokal isothermen Plasmas“, bei dem ein unendlich schnell
wirkender lokaler Warmeaustausch zwischen Elektronen und
Ionen stattfindet, derart, da beide an einem Ort stets die
gleiche Temperatur 7 haben. Die hier durchgefiihrten Rech-
nungen lassen sich auch auf ein solches ebenfalls isentropi-
sches Plasma mit der Zustandsgleichung

Ti Te T (Ni Ne)’/s

T, T, T, \ NgZ,
iibertragen und fiihrten bei #=1 zu einer um 10°o héheren
Ladungstrennung in der Dichtespitze.

Stellt man sich in Abb. 3 die ins Unendliche rei-
chende Impulsflanke in gewissem Abstand vom
Punkte N;=N.(#N,) nach oben gebogen und in
eine neue Spitze einlaufend vor, so hat man damit
etwa das Aussehen einer periodischen Ionenschall-
welle maximaler Amplitude vor sich. Auf weitere
Ausfithrungen iber den periodischen Fall konnen
wir verzichten, da wir in der schon angekiindigten
Untersuchung iiber allgemeine Wellenlosungen der
Gleichungen der vorhergehenden Arbeit noch darauf
zuriickkommen werden.

§ 5. Elektronenschall — Ladungstrennung —
Analytische Integration — Dispersionsformel

Aus den vorhergehenden Paragraphen wissen wir
bereits, daf} die maximal mogliche Ladungstrennung
durch die Stellen hochster Verdichtung einer der
Plasmakomponenten unter Ausbildung einer Dichte-
spitze gegeben ist. Diese Stellen sind durch gleich-
zeitiges Verschwinden von Zidhler und Nenner des
Integranden in (13) gekennzeichnet, was uns im
Fall des Elektronenschalls in der aus (13b) her-
vorgehenden Beziehung (19) unmittelbar zur Ab-
héngigkeit der maximalen Verdichtungsamplitude
d=N¢ nax/Ny=1/w; und der Ladungstrennung vom
Verhaltnis Fortpflanzungsgeschwindigkeit v, zu Elek-
tronenschallgeschwindigkeit a, = V5 k T./3 m, fiihrt.
Analog zu (20) gilt nun:

d=K,< 2_SkToe jo

3 me (26}

oder v,
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und die Ladungstrennung wird jetzt einfach:
~ Ne—N; d—1

Wit Ne |~ NeF N, —dF1" (29)
In Abb. 5 sind diese Abhingigkeiten dargestellt; je-
doch haben wir statt der maximalen Verdichtungs-
amplitude d selbst das im nachsten Absatz bendtigte
Verhiltnis der maximalen wahren hydrodynamischen
Teilchengeschwindigkeit zur Fortpflanzungsgeschwin-
digkeit (vy— vemin) /vg=1—1/d eingetragen.

e,
2 —
3m, %

010-* 103 102 10-1

Abb. 5. Quasistationdr hochstmogliche Elektronenverdichtung
d und Ladungstrennung fiir den Elektronenschall in Ab-
hingigkeit vom Verhiltnis Elektronenschallgeschwindigkeit
zu Fortpflanzungsgeschwindigkeit. Untere Kurven (dicker
ausgezogen) : adiabatisches Elektronengas; obere Kurven
(diinner ausgezogen) : isothermes Elektronengas.

Hitten wir das Elektronengas (unter Verletzung des
Energiesatzes) als isotherm behandelt, Te=Tge, wiirden sich
die in Abb.5 diinn eingezeichneten Kurven ergeben haben,
die wir hier deshalb reproduzieren, um noch einmal zu zei-
gen, dal} Beriicksichtigung von Wirmeleitung etc. die Gren-
zen fiir die Ladungstrennung heraufsetzt.

Wie beim Ionenschall sind auch hier die Fort-
pflanzungsgeschwindigkeiten v, beliebiger Elektro-
nenschallwellen nach (28) stets grofer als die
Elektronenschallgeschwindigkeit. Im Gegensatz zum
Ionenschall aber folgt aus den Gleichungen hier
keine obere Grenze fiir v, wie in Gl. (24). Wenn
aber v, beliebige Werte annehmen kann, lafit sich
auch fur die Verdichtung und Ladungstrennung
keine obere Grenze als Funktion der Temperatur an-
geben. Nun wéchst mit v, aber auch die wahre Stro-
mungsgeschwindigkeit vy —v, der Elektronen und
wir konnen sinnvollerweise eine Begrenzung dadurch
einfihren, dafl wir verlangen, diese solle einen will-

11 Die Vermutung, dal sich bei solch grofien Elektronen-
verdichtungen die Ionen wieder merklich am Stromungsvor-
gang beteiligen konnten, erweist sich als unbegriindet. Fir
K. <1 ldBt sich (13) mit Hilfe elliptischer Integrale berech-
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kiirlich festzulegenden Bruchteil § der Lichtgeschwin-
digkeit nicht tiberschreiten. Es soll also gelten

Vo — Ve min /}C 1 1 _1 3/
Uo =1 =1-Kk (30)
Mit (28) hat man daher
d¥(d—1)2=3meS P (31)

5k Toe
Die somit fiir beliebige [ {festgelegten Werte von
maximaler Verdichtung und Ladungstrennung sind
in Abb. 6 als Funktion der Elektronentemperatur
eingetragen. Bei der Wahl von f ist zu bedenken,
dal} die Elektronen wegen ihrer kleinen Masse schon
durch relativ kleine Spannungen auf betrachtliche
Stromungsgeschwindigkeiten beschleunigt werden;
eine Anderung von § < 1 wirkt sich in der Dar-
stellung nur in einer Verschiebung der logarithmi-
schen Temperaturskala aus. Wahlt man f§ etwa /3,
so ergibt sich aus der Abb., daB fiir Elektronen-
temperaturen unter 10°° K mit maximalen Ver-
dichtungen d > 10 auch schon bei kleinen Elektro-
nengeschwindigkeiten praktisch keine Beschriankung
in der Ladungstrennung besteht!!. Daf} die Ladungs-
trennung nach dieser Darstellung mit steigender
Elektronentemperatur im Gegensatz zum Ionenschall
abnimmt, liegt daran, dafl mit zunehmender Tem-
peratur Druck- und Diffusionseffekte mehr und mehr
an Einflul gewinnen.

r 5]
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\
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Abb. 6. Temperaturabhiéingigkeit der quasistationdr hochst-

moglichen Ladungstrennung, Elektronenverdichtung d und

Abweichung der Frequenz w der Welle maximaler Ladungs-

trennung von der Plasmafrequenz we. [f=Verhiltnis der

maximalen Elektronengeschwindigkeit zur Lichtgeschwindig-
keit (s. Text).

Da im Elektronenschallgebiet die Ionen praktisch
ruhen, gibt es neben der Stelle w =v./vy=1 keinen
zweiten Punkt mit NV, =/; bei von der Ruhedichte

nen und die im § 3 festgestellte praktische Nichtbeteiligung
der Tonen auch fiir sehr groBe Elektronenverdichtungen be-
statigen.
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N, verschiedener Dichte. Infolgedessen besitzt (19)
nur periodische Losungen. Wir fragen daher nach
dem Zusammenhang zwischen Wellenldnge bzw. Fre-
quenz und Fortpflanzungsgeschwindigkeit, m. a. W.
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Radikanden R~ @"? im Nenner des Integranden von
(19) bis zu Gliedern zweiter Ordnung in w —1 und
beachten, daBl der Nenner an der Grenze w =uw,
Null werden muB}, so geht (19) iiber in

nach der Dispersionsformel. Hierzu miissen wir das |
Integral (19) ausfiihren. gpE== V1—Ke (32)
Gliicklicherweise 14t sich die Losung von (19) wl_K9+(1+5/3 Ke) (w—1) —20/g Ko (w—1)2
niherungsweise durch einen einfachen, fiir die mei- Vo V=1 w—1)® —dw
sten Zwecke vollig ausreichend genauen, analytischen w, > K
Ausdruck angeben. Entwickeln wir Zdhler und den Die elementare Integration fithrt auf
(e TV _x 1 10 —1)2)\ in 21
a(l, - 2)1 1-K.=41 Ko(l—l— /9 (w;—1) )1 arc sm|w1_” (33)

— Vi —1)7— (w=1)% {1 +5/s K, ~ s K;(w—1) }.

Die Entwicklung, die zu (32) bzw. (33) fihrt, gibt
zunichst immer ein sehr gutes Naherungsresultat,
solange sich die Funktion R(w) in der Umgebung
ihres Maximums bei w =1 im wesentlichen parabo-
lisch verhalt, bevor Glieder 3. und hoherer Ordnung
in w—1 nach Erreichen eines Wendepunktes in
R(w) Einfluf} gewinnen (vgl. Abb. 2). Der Wende-
punkt wird nicht oder gerade erreicht, wenn zwischen
der Grenze w, und K, folgende Beziehung besteht

K. < 3w,"/(8—5uw,). (34)

Aber auch iiber den Wendepunkt hinaus bis sogar
zur Grenzamplitude w; = K.”* selbst gibt (32) bzw.
(33) recht genaue Resultate; im letzteren Fall lie-
fert diese Naherung natiirlich keine Dichtespitze mit
unstetiger Ableitung. In Abb. 7 ist eine Elektronen-
schallwelle mit der Verdichtung d = 5 wiedergegeben.
Wire d gleich der Grenzverdichtung K.~ ", so wiir-
den die Abweichungen der Niaherung von der stren-
gen Losung in dem Mafistab, in dem die Abb. im
Druck erscheint, kaum deutlich wiederzugeben sein.
Durch Einsetzen der Grenze w =wy in (33) ergibt
sich die amplitudenabhingige Dispersionsformel

aV1l —K.>~1—Kq(1+1%(w; —1)2) . (35)
Fithren wir den Brechungsindex n=c/v, und die
Verdichtungsamplitude d = 1/w, ein und beriicksich-
tigen die Bedeutung von K. und a, so lautet (35)
1— (5 k Toe/3 me c2)n® (1+1%5(1—1/d)?)

i e’ V1= (5 k Toe/3 me c2)n? (358)
und fiir kleine Amplituden 12
podmel (1wl g

w?)

h SkTUI‘,

12 Fiir den isothermen Fall in anderer Schreibweise be-
reits von E. G. Linder, Phys. Rev. 49, 753 [1936], aus
einer linearisierten Betrachtung abgeleitet.
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Abb. 7. Elektronen-Plasmawelle grofler Dichteamplitude.

Wir ersehen daraus, dal} stets
0Zw.=V4ae2 Ny/m, und n>?<3m,c*/5kT.

entsprechend vy>=>a.? ist. Amplitudensteigerung
wirkt im Sinne von Frequenz- und Geschwindigkeits-
zunahme. Auch fir die Maximalamplituden gilt (35)
mit sehr guter Naherung. Dort hat man also mit

Gl. (28)

oo/ ={1—-d="(1+19(1 =1/d)2) } (1 —d ") 7,
(36)

wobei d =d(Ty./f?) nach (31) ist. Die hierdurch

gegebene Frequenz, genauer die relative Abweichung
von der Plasmafrequenz fiir die Bewegungen maxi-
maler Ladungstrennung, ist in Abb. 6 mit eingezeich-
net. Wir ersehen daraus, daf} groBle Raumladungs-
schwankungen, wie sie fir Temperaturen unter
108 ° K moglich sind, praktisch nur mit der Plasma-
frequenz erfolgen konnen.

Wir wollen nun noch die GroBenordnung der bei hohen
Dichteamplituden auftretenden Spannungen, Stromdichten
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etc. berechnen. Fiir die Potentialdifferenz zwischen dem po-
sitiven und negativen Raumladungsmaximum folgt aus (9)
e AD=1/2 me vy {w,2—w2+3 K¢ (0, /s —w,s) },
was im Falle hochstmoglicher Amplituden d=K¢ "s=1/w,
~ 1/(2—w,) iibergeht in
e AD=12mev2 {4(1—1/d)+3|d® [ (2d—1)"/s—1]}

und fir d <3 zu groBenordnungsmiBig e 4D ~ mg vy’
fiihrt oder nach (28) zu e AD > 5/3k Tye d/>. Mit Verdich-
tungen d <~ 5 kommen wir damit bei Te=10% °K bereits zu
Spannungen von 10 bis 100 kV, wobei die Stromungs-
geschwindigkeiten noch geniigend klein gegen ¢ bleiben. Die
Groflenordnung der Feldstirke ergibt sich zu

D' ~2AD[h=AD we[n vy > V2 Ny k Toe d's= )2 Pe d'ls
und schlieflich fiir die Stromdichte j
5 k Toe
3me
Setzen wir Ny=10% cm™ ein, einen Wert, wie er etwa fiir
die innere Sonnenkorona bei 1,2 Sonnenradien zutrifft und
der zu einer Plasmafrequenz we ~ 2 7 100 MHz fiihrt, so
hat man mit den schon benutzten Werten T,=10% °K und
d~5 @ ~1kV/em und j~0,1 A/cm2.

Vergleichen wir die eben vorgenommenen Ab-
schitzungen mit denjenigen vom Ionenschall, so
sehen wir, dal} fiir die iiberthermische kosmische
Radioemission im wesentlichen nur Elektronenbewe-
gungen verantwortlich gemacht werden konnen. Die
radioastronomischen Beobachtungen zeichnen auch
deutlich die Elektronenplasmafrequenz aus, die um
einen Faktor V/m;/m, iiber der Ionenplasmafrequenz
liegt. Beim Anblick der anharmonischen Welle in
Abb. 7 wird die Beobachtung von Harmonischen der
Plasmafrequenz verstiandlich®. In einer folgenden
Arbeit werden wir zeigen, wie die hier behandelten

Wellen zu elektromagnetischer Ausstrahlung fiih-
14

j=e N¢ (vg—ve) =€ Nyvy (d—1) > e N, I (d—1).

ren

Wir miissen hier noch eine Feststellung machen beziiglich
der Ausdehnung von kohdrent schwingenden Bereichen beim

13 J,P. Wild, J. D. Murray u. W. C. Rowe, Na-
ture, Lond. 172, 533 [1953].

PLASMASTROMUNGEN GROSSER AMPLITUDE UND LADUNGSTRENNUNG

Elektronenschall (~ 1/2) gegeniiber einer Bemerkung, die
bei Rompe und Steenbeck?® nachzulesen ist. Nach
dieser Bemerkung sollen diese Bereiche grof} sein gegen die
sogenannte Relaxationsstrecke — d.i. diejenige Strecke,
nach deren Durchlaufen ein Elektron im Mittel seine ther-
mische Energie durch St6Be einmal mit seiner Umgebung
ausgetauscht hat —, damit die Elektronen ein Raumladungs-
zentrum auf Grund ihrer thermischen Bewegung nicht zu
schnell verlassen konnen. Dies kann aber im astrophysikali-
schen Bereich keinesfalls zutreffen; jedenfalls nicht fiir die
bei Rompe und Steenb eck angegebenen Relaxations-
strecken nach Druyvesteyn, Gvosdover u.a., denn
unter astrophysikalischen Bedingungen ergeben sie sich als
so grof}, dal sich bei den interessierenden Dichten und Tem-
peraturen keine Plasmaschwingungen der beobachteten Fre-
quenz ausbilden konnten, es sei denn bei unvertretbar
hohen Fortpflanzungs- und hydrodynamischen Elektronen-
geschwindigkeiten. Wir sind vielmehr der Ansicht, daB} die
thermischen Bewegungen der Elektronen nur in solcher
Weise erfolgen konnen, dafl sie mit der Existenz der makro-
skopischen, von der Gesamtheit der stromenden Ladungs-
trager gebildeten, elektrischen Felder vereinbar sind, d.h.,
daB ein Ladungstriger nicht unabhéngig von den iibrigen
in ein Raumladungszentrum eindringen oder sich daraus
entfernen kann. Da Ladungstriager wegen ihrer weitreichen-
den Coulombschen Krifte sich stets in Wechselwirkung mit
ihrer Umgebung befinden, so dal es bekanntlich Schwierig-
keiten macht, im Elektronengas so etwas wie Stofle zu defi-
nieren, sollte ein Plasma viel besser durch kontinuums-
theoretische Vorstellungen beschrieben werden konnen als
ein Neutralgas. Uberspitzt ausgedriickt wiirde man vielleicht
sagen konnen, daB es im Plasma keine obere Frequenz-
(wohl aber Amplituden-)Grenze fiir Ultraschallausbreitung
geben sollte, die in Neutralgasen theoretisch und experimen-
tell durch die mittlere freie Weglidnge gegeben ist. Auch die
Forderung, daB die Ausdehnung eines kohdrent schwingen-
den Bereichs groB sein soll gegen die sogenannte Debye-
Linge (k Te/4 €2 Ng)'/, ist bereits beim Vierfachen der
Plasmafrequenz nicht mehr erfiillt.

Herrn Prof. A. Unséld und Herrn Prof. G. Burk-
hardt danke ich fiir Diskussionen zum Gegenstand dieser
Arbeit.

14 Sjehe auch R. W. Larenz, Naturwiss. 42, 253 [1955].



